Note

Preparation of [carboxy-¹³C]4-nitrophenylacetic acid

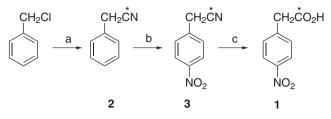
John E. T. Corrie* and V. Ranjit N. Munasinghe National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK

Summary

Reaction of sodium [¹³C]cyanide with excess benzyl chloride gave $\sim 75\%$ utilization of the isotope. Subsequent nitration, isomer separation and hydrolysis of the nitrile gave the required carboxy-labelled 4-nitrophenylacetic acid. Copyright © 2005 John Wiley & Sons, Ltd.

Key Words: nitration; chromatography; NMR spectra

Introduction


As part of a quantitative study of photodecarboxylation reactions using rapid-scan IR spectroscopy, we needed a compound that undergoes efficient photodecarboxylation and that could easily be labelled with ¹³C in its carboxy group. The quantity of $[^{12}C]CO_2$ formed from the test substance could then be related to the quantity of $[^{13}C]CO_2$ formed from the standard using the relative intensity of the normal and isotopic CO_2 bands in the IR spectra. 4-Nitrophenylacetic acid 1 (as its anion) is known to photodecarboxylate with high quantum yield¹ and appeared to be a suitable choice.

Results and discussion

A simple route to isotopically labelled **1** should *a priori* be available by displacement on 4-nitrobenzyl chloride or bromide with labelled cyanide ion, followed by hydrolysis. Although such procedures have been described (preferably with a mixture of NaCN and HCN, or the equivalent produced by adding a strong acid such as TFA to NaCN), they are inefficient in terms of cyanide incorporation, so are not well suited for isotopic synthesis. Kalir and Mualem² described these procedures and reviewed relevant literature on unwanted dimeric by-products that are formed when displacement is

*Correspondence to: Dr J. E. T. Corrie, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK. E-mail: jcorrie@nimr.mrc.ac.uk

Copyright © 2005 John Wiley & Sons, Ltd.

Scheme 1. Reagents: (a) $Na[^{13}C]CN$ -aq. EtOH, then thiourea; (b) NH_4NO_3 -TFAA; (c) $H_2O-H_2SO_4$ -HOAc, heat

attempted without HCN. The most direct alternative route to 1 involves preparation of labelled benzyl cyanide 2, followed by nitration, isolation of the required 4-nitrobenzyl cyanide 3 and acidic hydrolysis (Scheme 1). These steps have been described previously, but we report here their adaptation to small-scale isotopic synthesis.

In a modification of a known procedure,³ sodium [¹³C]cyanide was allowed to react with excess benzyl chloride in aqueous ethanol, and residual benzyl chloride was then destroyed with thiourea. Benzyl [¹³C]cyanide has been reported by other workers who used either the original aqueous ethanol procedure^{3,4} or in better yield in acetonitrile with 18-crown-6 as catalyst.⁵ Our modified procedure gave labelled benzyl cyanide with 75% isotope utilization. Nitration of benzyl cyanide with nitric–sulfuric acid mixture is well known,⁶ but for small-scale work ammonium nitrate in TFAA⁷ was more convenient and gave the 2- and 4-nitro isomers in ~1:3 ratio. Flash chromatography gave pure 4-nitrobenzyl cyanide **3** in 50% yield. Acidic hydrolysis as described⁶ then yielded the required acid **1**.

Experimental

Sodium [¹³C]cyanide (99% isotopic abundance) was from Cambridge Isotope Laboratories, Andover, MA. Flash chromatography was on Merck 9385 silical gel. NMR spectra were determined in CDCl₃ on either JEOL FX90Q or Varian Unityplus 500 spectrometers.

Benzyl [¹³C]cyanide 2

A solution of benzyl chloride (4.0 g, 31.6 mmol) in EtOH (5 ml) was added dropwise over 45 min to a solution of sodium [¹³C]cyanide (1.0 g, 20 mmol)in water (1.8 ml) and the mixture was refluxed for 6 h. Thiourea (1.14 g, 15 mmol) and EtOH (10 ml) were added and the mixture was refluxed for a further 1 h. The solution was concentrated under reduced pressure and partitioned between Et₂O and water. The organic phase was washed with water, dried and evaporated to a yellow oil and purified by flash chromatography [EtOAc–light petroleum, 1:9] to give **2** (1.76 g, 74.6%), ¹H-NMR (90 MHz): δ 7.33 (5H, br s, Ar-H), 3.73 (2H, d, ²J_{C-H} = 10.5 Hz, CH₂).

4-Nitrobenzyl $[^{13}C]$ cyanide **3**

Ammonium nitrate (1.15 g, 14.4 mmol) and trifluoroacetic anhydride (14.4 ml) were added to benzyl [¹³C]cyanide **2** (1.7 g, 14.4 mmol) and the solution was stirred at room temperature. It warmed spontaneously to reflux within 15 min and was stirred for a further 1.25 h at room temperature, then diluted carefully with water (70 ml) and the aqueous layer was extracted with Et₂O. The organic phase was washed with aq. NaHCO₃ and brine, dried and evaporated. The mixture of isotopic 2- and 4-nitrobenzyl cyanides was separated by flash chromatography (EtOAc–light petroleum, 1:1). Silica gel TLC $R_{\rm f}$ values in the same solvent were 0.40 and 0.36 for the 2- and 4-nitro isomers, respectively. 4-Nitrobenzyl [¹³C]cyanide **3** was obtained as a pale yellow solid (1.16 g, 50%) that was used without further purification. ¹H-NMR (90 MHz): δ 8.25 (2H, d, J=8.7 Hz, Ar-H3,5), 7.54 (2H, d, J=8.7 Hz, Ar-H2,6), 3.88 (2H, d, $^2J_{C-H}$ =10.6 Hz, CH₂).

[carboxy-¹³C]4-Nitrophenylacetic acid 1

The cyanide **3** (1.1 g, 6.75 mmol) was mixed with water (2.2 ml), concentrated H₂SO₄ (2.2 ml) and glacial acetic acid (2.2 ml) and refluxed for 1 h. The mixture was diluted with water (55 ml) and extracted with Et₂O. The organic extract was dried and evaporated to give [carboxy-¹³C]4-nitropheny-lacetic acid **1** as beige crystals (1.1 g, 90%) m.p. 149–151°C (from aqueous ethanol). UV [EtOH–25 mM Na phosphate, pH 7 (1:9 v/v)]: λ_{max} 287 nm (ϵ 10 900 M⁻¹ cm⁻¹); ¹H-NMR (500 MHz): δ 8.21 (2H, d, J=8.7 Hz, Ar-H3,5), 7.47 (2H, d, J=8.7 Hz, Ar-H2,6) 3.78 (2H, d, ²J_{C-H}=7.8 Hz, CH₂).

Acknowledgements

We are grateful to the MRC Biomedical NMR Centre for access to facilities.

References

- (a) Margerum JD, Petrusis CT. J Am Chem Soc 1969; 91: 2467–2472; (b) Wan P, Muralidharan S. J Am Chem Soc 1988; 110: 4336–4345.
- 2. Kalir A, Mualem R. Synthesis 1987; 514-515.
- 3. Adams R, Thal AF. Org Synth Coll Vol 1932; 1: 101-103.
- 4. Crow WD, McNab H. Aust J Chem 1979; 32: 112–121.
- 5. Cox RJ, O'Hagan D. J Chem Soc, Perkin Trans 1 1991; 2537-2540.
- 6. Robertson GR. Org Synth Coll Vol 1932; 1: 389-390.
- 7. Crivello JV. J Org Chem 1981; 46: 3056-3060.
- 8. Robertson GR. Org Synth Coll Vol 1932; 1: 398-399.

Copyright © 2005 John Wiley & Sons, Ltd.